Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 247
1.
Int J Biol Macromol ; 269(Pt 2): 132216, 2024 May 08.
Article En | MEDLINE | ID: mdl-38729483

Agricultural by-products of sesame are promising bioresources in food processing. This study extracted lignin from the by-products of sesame oil production, namely, the capsules and straw of black and white sesame. Using acid, alkali, and ethanol methods, 12 distinct lignins were obtained to prepare biochar, aiming to investigate both the structural characteristics of lignin-based biochar (LBB) and its ability to remove benzo[a]pyrene (BaP) from sesame oil. The results showed that white sesame straw was the most suitable raw material for preparing biochar. In terms of the preparation method, acid-extracted lignin biochar was more effective in removing BaP than alkaline or ethanol methods. Notably, WS-1LB (white sesame straw acid-extracted lignin biochar) exhibited the highest BaP adsorption efficiency (91.44 %) and the maximum specific surface area (1065.8187 m2/g), characterized by porous structures. The pseudo 2nd and Freundlich models were found to be the best fit for the adsorption kinetics and isotherms of BaP on LBB, respectively, suggesting that a multilayer adsorption process was dominant. The high adsorption of LBB mainly resulted from pore filling. This study provides an economical and highly efficient biochar adsorbent for the removal of BaP in oil.

2.
Front Cell Infect Microbiol ; 14: 1332211, 2024.
Article En | MEDLINE | ID: mdl-38741890

Background: The influencing factors of the process from latent tuberculosis infection (LTBI) to the onset of active tuberculosis (TB) remain unknown among different population groups, especially among older individuals in high-incidence areas. This study aimed to investigate the development of active TB among older adults with LTBI and identify groups in greatest need of improved prevention and control strategies for TB. Methods: In 2021, we implemented an investigation among older individuals (≥ 65 years old) in two towns in Zhejiang Province with the highest incidence of TB. All participants underwent assessment using standardized questionnaires, physical examinations, interferon-gamma release assays, and chest radiography. All the participants with suspected TB based on the clinical symptoms or abnormal chest radiography results, as well as those with LTBI, were referred for diagnostic investigation in accordance with the national guidelines. Those with an initial diagnosis of TB were then excluded, whereas those with LTBI were included in a follow-up at baseline. Incident patients with active TB were identified from the Chinese Tuberculosis Management Information System, and a multivariate Cox regression model was used to estimate the incidence and risk of TB among those with LTBI. Results: In total, 667 participants with LTBI were followed up for 1,315.3 person-years, revealing a disease density of 1,292.5 individuals/100,000 person-years (17/1,315.3). For those with LTBI, chest radiograph abnormalities had adjusted hazard ratios for active TB of 4.9 (1.6-15.3). Conclusions: The presence of abnormal chest radiography findings increased the risk of active TB among older individuals with LTBI in high-epidemic sites in eastern China.


Latent Tuberculosis , Humans , Latent Tuberculosis/epidemiology , Latent Tuberculosis/diagnosis , China/epidemiology , Aged , Incidence , Male , Female , Risk Factors , Cohort Studies , Aged, 80 and over , Tuberculosis/epidemiology , Interferon-gamma Release Tests , Epidemics
3.
Gut ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38744443

OBJECTIVE: Squalene epoxidase (SQLE) promotes metabolic dysfunction-associated steatohepatitis-associated hepatocellular carcinoma (MASH-HCC), but its role in modulating the tumour immune microenvironment in MASH-HCC remains unclear. DESIGN: We established hepatocyte-specific Sqle transgenic (tg) and knockout mice, which were subjected to a choline-deficient high-fat diet plus diethylnitrosamine to induce MASH-HCC. SQLE function was also determined in orthotopic and humanised mice. Immune landscape alterations of MASH-HCC mediated by SQLE were profiled by single-cell RNA sequencing and flow cytometry. RESULTS: Hepatocyte-specific Sqle tg mice exhibited a marked increase in MASH-HCC burden compared with wild-type littermates, together with decreased tumour-infiltrating functional IFN-γ+ and Granzyme B+ CD8+ T cells while enriching Arg-1+ myeloid-derived suppressor cells (MDSCs). Conversely, hepatocyte-specific Sqle knockout suppressed tumour growth with increased cytotoxic CD8+ T cells and reduced Arg-1+ MDSCs, inferring that SQLE promotes immunosuppression in MASH-HCC. Mechanistically, SQLE-driven cholesterol accumulation in tumour microenvironment underlies its effect on CD8+ T cells and MDSCs. SQLE and its metabolite, cholesterol, impaired CD8+ T cell activity by inducing mitochondrial dysfunction. Cholesterol depletion in vitro abolished the effect of SQLE-overexpressing MASH-HCC cell supernatant on CD8+ T cell suppression and MDSC activation, whereas cholesterol supplementation had contrasting functions on CD8+ T cells and MDSCs treated with SQLE-knockout supernatant. Targeting SQLE with genetic ablation or pharmacological inhibitor, terbinafine, rescued the efficacy of anti-PD-1 treatment in MASH-HCC models. CONCLUSION: SQLE induces an impaired antitumour response in MASH-HCC via attenuating CD8+ T cell function and augmenting immunosuppressive MDSCs. SQLE is a promising target in boosting anti-PD-1 immunotherapy for MASH-HCC.

4.
Food Chem ; 451: 139469, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38703727

Excipient selection is crucial to address the oxidation and solubility challenges of bioactive substances, impacting their safety and efficacy. AKPL, a novel ω-3 polyunsaturated fatty acids (PUFAs) esterified phospholipid derived from Antarctic krill, demonstrates unique antioxidant capabilities and synergistic effects. It exhibits pronounced surface activity and electronegativity at physiological pH, as evidenced by a critical micelle concentration (CMC) of 0.15 g/L and ζ-potential of -49.9 mV. In aqueous environments, AKPL self-assembles into liposomal structures, offering high biocompatibility and promoting cell proliferation. Its polyunsaturated bond-rich structure provides additional oxidation sites, imparting antioxidant properties superior to other phospholipids like DSPC and DOPC. Additionally, AKPL augments the efficacy of lipophilic antioxidants, such as alpha-tocopherol and curcumin, in aqueous media through both intermolecular and intramolecular interactions. In sum, AKPL emerges as an innovative unsaturated phospholipid, offering new strategies for encapsulating and delivering oxygen-sensitive agents.

5.
Food Chem ; 450: 139347, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38653047

Food freshness monitoring is an important component in ensuring food safety for consumers and the food industry. Therefore, there is an urgent need for a portable, low-cost, and efficient detection method to determine the freshness. In this study, polyvinyl alcohol (PVA) was used as polymer carrier to prepare electrospinning film containing curcumin (Cur) and gardenia blue (GB) as intelligent indicator label on food packaging for real-time nondestructive detection of freshness of shrimp. The detection limit of ammonia response is less than or equal to 20 ppm, and the detection time is about 1 min, indicating that it has a sensitive response effect. At the same time, a smartphone application that can identify amines in response to color changes has been developed, and consumers can understand freshness by scanning the label. This study demonstrates the huge potential of smart indicator labels for food freshness monitoring.

6.
Photochem Photobiol ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38623769

The field of biofabrication imposes stringent requirements on the polymerization activity and biosafety of photopolymeric hydrogel systems. In this investigation, we designed and synthesized four hemicyanine dyes with a D-π-A structure specifically tailored for biofabrication purposes. These novel dyes, incorporating carbazole (CZ), triphenylamine (TPA), anthracene (AN), and benzodithiophene (BDT) as electron donors, along with heterocyclic salt (IN) as electron acceptors, were prepared using a straightforward synthesis method. The absorption maxima of ANIN, CZIN, and TPAIN exceeded 500 nm, rendering them suitable co-initiators for the free radical photopolymerization of acrylates under green-red light exposure facilitated by light-emitting diodes (LEDs) and the co-initiator iodonium salt (ION). Notably, CZIN and TPAIN, due to their robust dye absorption and efficient electron transfer to ION, functioned as high-performance photosensitizers. Meanwhile, BDTIN, with its strong and broad absorption range (400-600 nm), enhanced the accuracy of visible light photopolymerization. These dyes exhibit characteristics such as facile synthesis, heightened photo stability, and non-toxicity and also demonstrate the ability to discern the alkalinity of a solution to some extent. Furthermore, we explored the application of these hemicyanine dyes in 3D printing, showing potential to enhance printing resolution in DLP 3D printing (digital light process 3D printing).

7.
Article En | MEDLINE | ID: mdl-38567937

BACKGROUND: The superficial palmar arch is a crucial blood supply to the palm. However, it exhibits significant variations, posing challenges in surgical procedures. Gaining a comprehensive understanding of the relationship between different types, physiological indices, and the clinical significance of the superficial palmar arch will enhance the accuracy of diagnosing and treating patients. MATERIALS AND METHODS: In this study, we dissected a total of 72 specimens, comprising 39 males and 33 females. We observed the type, length, and diameter of the superficial palmar arch and analyzed its correlation with the disease. Additionally, we conducted Doppler ultrasound measurements on 20 healthy volunteers (10 males and 10 females) and 18 patients with superficial palmar arch injury (10 males and 8 females) to assess the classification, diameter, intimal thickness, and blood flow velocity of the superficial palmar arch. We collected information on 9 male patients with finger fracture and observed the classification of the superficial palmar arch, fracture healing time, and basic function recovery time. Lastly, we analyzed rare variant specimens encountered during the anatomy process. RESULTS: In the exploration of human anatomy, there were four types of superficial palmar arch: ulnar artery arch type in 17 cases (23.61%), radial ulnar artery type in 46 cases (63.89%), ulnar artery without arch type in 6 cases (8.33%), and 3 cases (4.17%) of double arch type of radial and ulnar artery. One case non-arched type was found in imaging examination (5%). In one elderly male specimen, the hand's superficial palmar arch artery was tortuous and dilated. In addition, there was a positive correlation between the diameter and length of the superficial palmar arch (except the second common palmar digital artery in women), among which the ulnar artery and the third common palmar digital artery had the strongest correlation. Compared to healthy volunteers, patients with ulnar injury in the Radial-ulnar artery type exhibited a decrease in the diameter and blood flow velocity of the ulnar artery, as well as the second and third common palmar digital arteries. No such change was observed in patients with radial injury. Additionally, patients with ulnar injury in other types of Radial-ulnar artery also experienced a decrease in the diameter and blood flow velocity of the ulnar artery. Finger fracture patients with Ulnar artery with arch and Ulnar artery without arch had shorter fracture healing time and basic function recovery time compared to those with Radial-ulnar artery type. CONCLUSIONS: This study investigated the relationship between the classification, physiological index, and clinical significance of the superficial palmar arch at all levels. The results demonstrated that when the superficial palmar arch is damaged, it is important to consider both the classification and the site of damage, as this can potentially result in improved therapeutic outcomes. These findings provide a basis for future clinical research.

8.
Front Neurol ; 15: 1373390, 2024.
Article En | MEDLINE | ID: mdl-38585348

Objective: To explore the modulations of electroacupuncture in subjective tinnitus (ST) by comparing the difference of functional connectivity (FC) in ST patients and healthy volunteers between the insular (INS) and the whole brain region. Methods: A total of 34 ST patients were selected into electroacupuncture group (EG) and 34 age- and sex-matched normal subjects were recruited into control group (CG). The EG received acupuncture at SI19 (Tinggong), GB11 (Touqiaoyin), TE17 (Yifeng), GV20 (Baihui), GV15 (Yamen), GV14 (Dazhui), SJ13 (Zhongzhu), among which the points of SI19 and GB11 were connected to the electroacupuncture instrument with the density wave of 2/50 Hz, and 3 treatments per week for 10 sessions in total. The severity of tinnitus was evaluated by Tinnitus Handicap Inventory (THI), the hearing status was recorded using pure tone audiometry, and resting-state functional magnetic resonance imaging (rs-fMRI) was performed on the brain before and after treatment, the CG received no intervention yet only rs-fMRI data were collected. Results: With the electroacupuncture treatment, the total THI score, average air conduction threshold of patients of EG were significantly lower than before (p < 0.01), and the total effective rate was 88.24%. Compared with CG, FC of ST patients between INS and left superior temporal gyrus and right hippocampal significantly decreased before treatment, while FC of ST patients between INS and right superior frontal gyrus, left middle frontal gyrus and right anterior cuneus significantly decreased after treatment (voxel p < 0.001, cluster p < 0.05, corrected with GRF). FC of ST patients between the INS and right middle frontal gyrus, left superior frontal gyrus and right paracentral lobule showed a significant decrease after treatment (voxel p < 0.001, cluster p < 0.05, corrected with GRF). In addition, THI score in EG was negatively correlated with the reduction of FC value in INS-left superior frontal gyrus before treatment (r = -0.41, p = 0.017). Therefore, this study suggests that abnormal FC of INS may be one of the significant central mechanisms of ST patients and can be modulated by electroacupuncture. Discussion: Electroacupuncture treatment can effectively reduce or eliminate tinnitus symptoms in ST patients and improve the hearing by decreasing FC between the INS and the frontal and temporal brain regions.

9.
Article En | MEDLINE | ID: mdl-38600661

High-voltage resistant quasi-solid-state polymer electrolytes (QSPEs) are promising for enhancing the energy density of lithium-metal batteries in practice. However, side reactions occurring at the interfaces between the anodes or cathodes and QSPEs considerably reduce the lifespan of high-voltage LMBs. In this study, a copolymer of vinyl ethylene carbonate (VEC) and poly(ethylene glycol) diacrylate (PEGDA) was used as the framework, with a cellulose membrane (CE) as the supporting layer. Based on density functional theory calculations, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), an ionic liquid, was screened because of its lowest unoccupied molecular orbital energy level as a modifying agent for the in situ P(VECx-EGy)/Pyrz/LiTFSI@CE QSPEs synthesis. Pyr14+, with a lithiophobic alkyl chain, forms a dense positive ion shielding layer on the protruding tips of deposited lithium, facilitating uniform and smooth lithium deposition. Pyr14TFSI assists in constructing a stable solid electrolyte interphase (SEI) layer on the Li surface enriched with LiF, Li3N, and RCOOLi. The modulation of lithium deposition behavior on the anode by Pyr14TFSI ensures stable Li plating/stripping for >1500 h. A Li-Cu cell exhibits stable cycling for >200 cycles at a current density of 0.05 mA cm-2, with an average Coulombic efficiency of 92.7%. In situ polymerization ensures that P(VECx-EGy)/Pyrz/LiTFSI@CE QSPEs exhibit excellent interface compatibility with the anode and the cathode. The CR2032 button cell Li|P(VEC1-EG0.06)/Pyr0.4/LiTFSI@CE|LiCoO2 demonstrates stable cycling with a negligible capacity decay of 0.083% per cycle for >390 cycles at 25 °C and 0.2 C when using a high-voltage LiCoO2 (4.45 V) cathode. Furthermore, a 7.1 mAh pouch cell achieves stable charge-discharge cycles, confirming the pronounced stability of the as-fabricated QSPE at the interfaces of the high-voltage LiCoO2 cathode and Li anode.

10.
J Vis Exp ; (205)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38497658

The investigation of interactions between different molecules is a crucial aspect of understanding disease pathogenesis and screening for drug targets. Umbelliferone, an active ingredient in Tibetan medicine Vicatia thibetica, exhibits an immunomodulatory effect with an unknown mechanism. The CD40 protein is a key target in the immune response. Therefore, this study employs the principle of differential scanning fluorescence technology to analyze the interactions between CD40 protein and umbelliferone using fluorescent enzyme markers. Initially, the stability of the protein fluorescent orange dye was experimentally verified, and the optimal dilution ratio of 1:500 was determined. Subsequently, it was observed that the temperature melting (Tm) value of CD40 protein tended to decrease with an increase in concentration. Interestingly, the interaction between CD40 protein and umbelliferone was found to enhance the thermal stability of CD40 protein. This study represents the first attempt to detect the binding potential of small molecule compounds and proteins using fluorescence microplates and fluorescent dyes. The technique is characterized by high sensitivity and accuracy, promising advancements in the fields of protein stability, protein structure, and protein-ligand interactions, thus facilitating further research and exploration.


Drug Delivery Systems , Fluorescent Dyes , Fluorescence , Immunomodulation , Radionuclide Imaging
11.
Int J Oncol ; 64(5)2024 05.
Article En | MEDLINE | ID: mdl-38551160

YTHDF1, an N6­methyladenosine (m6A)­binding protein, is significantly upregulated in glioma tissues. The present study investigated the molecular mechanism underlying the regulatory effects of YTHDF1 on the viability, invasion and self­renewal of glioma stem cells (GSCs). Glioma and normal brain tissues were collected, and reverse transcription­quantitative PCR and western blotting were used to measure the gene and protein expression levels, respectively. Methylated RNA immunoprecipitation­PCR was used to assess the m6A modification level of the target gene. Subsequently GSCs were induced, and YTHDF1 and LINC00900 gene regulation was carried out using lentiviral infection. The viability, invasion and self­renewal of GSCs were assessed by Cell Counting Kit­8, Transwell and sphere formation assays, respectively. Binding between YTHDF1 and LINC00900 was verified by RNA immunoprecipitation and RNA pull­down assays. The targeted binding of microRNA (miR)­1205 to the LINC00900/STAT3 3'­UTR was verified using a luciferase reporter assay. The results revealed that YTHDF1 and LINC00900 expression levels were significantly upregulated in glioma tissues, and a high m6A modification level in LINC00900 transcripts was detected in glioma tissues. Overexpression of YTHDF1 promoted GSC viability, invasion and self­renewal, whereas knockdown of YTHDF1 had the opposite effects. In addition, YTHDF1 maintained the stability of LINC00900 and upregulated its expression through binding to it, thereby promoting GSC viability, invasion and self­renewal. Furthermore, LINC00900 promoted GSC viability, invasion, self­renewal and tumor growth by regulating the miR­1205/STAT3 axis. In conclusion, YTHDF1 promotes GSC viability and self­renewal by regulating the LINC00900/miR­1205/STAT3 axis.


Brain Neoplasms , Glioma , MicroRNAs , Neoplastic Stem Cells , Humans , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glioma/pathology , MicroRNAs/metabolism , Neoplastic Stem Cells/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
12.
Ying Yong Sheng Tai Xue Bao ; 35(1): 195-202, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38511456

In order to understand the response and adaptation mechanisms of photosynthetic characteristics and growth for Cunninghamia lanceolata saplings in the subtropical region to global warming, we conducted the root-box warming experiment (ambient, ambient+4 ℃) at the Sanming Forest Ecosystem National Observation and Research Station in Fujian Province to investigate the effects of soil warming on the photosynthetic characteristics and growth of C. lanceolata saplings in different seasons. The results showed that the net photosynthetic rate (Pn) and stomatal conductance (gs) of C. lanceolata significantly decreased in summer compared with in spring and autumn. Soil warming had no effect on the Pn and gs of C. lanceolata. However, the interaction between warming and season significantly impacted the leaf water use efficiency (WUE). The tree height and ground diameter growth of C. lanceolata significantly increased in spring compared with in summer and autumn. Warming significantly reduced ground diameter growth, and it diminished the net diameter growth by 48.1% in autumn. However, warming had no impact on the tree height growth of C. lanceolata in each season. The specific leaf area, soluble sugar, and non-structural carbohydrates contents of C. lanceolata significantly improved in summer and autumn compared with in spring. Warming had rarely influence on leaf functional traits in each season. In conclusion, the response of photosynthesis for C. lanceolata to soil warming was insignificant. The photosynthesis of C. lanceolata exhibited significant seasonal dynamics, primarily controlled by gs. C. lanceolata adapted to soil warming by adjusting WUE, and it adjusted to high temperatures and drought stress in summer by increasing soluble sugar content and specific leaf area. The effect of warming on ground diameter growth of C. lanceolata was primarily driven by soil moisture. The seasonal difference in the growth of C. lanceolata was influenced by the photosynthesis of C. lanceolata and the trade-off between the utilization and storage of photosynthetic products.


Cunninghamia , Ecosystem , Carbohydrates , Photosynthesis , Seasons , Soil/chemistry , Sugars , Trees/physiology
13.
Appl Opt ; 63(5): 1258-1264, 2024 Feb 10.
Article En | MEDLINE | ID: mdl-38437305

Lead halide perovskites (LHPs) have been extensively studied due to their remarkable optoelectronic performance. However, the toxicity of a lead ion to humans and its instability under ambient conditions render lead-based halide perovskite an unsuitable material for commercialization. Meanwhile, lead-free halide perovskite (LFHP) devices generally exhibit poor performance. Therefore, enhancing photoelectric conversion capacity is the most important issue that needs to be addressed. Here, we propose a photodetector (PD) fabricated using C s B i 3 I 10/p h e n y l-C 61-butyric acid methyl ester (PCBM) bulk heterojunction as the active layer. The PD illuminated under 532 nm can reach a high responsivity (1.54 A/W) at -2V bias, while at 2 V bias, the PD reaches a higher responsivity (224.40 A/W). All of those results suggest that C s B i 3 I 10/P C B M bulk heterojunctions hold enormous potential in substituting for LHPs in optoelectronic devices.

14.
Anal Chem ; 96(10): 4290-4298, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38427621

Halide perovskites have emerged as a highly promising class of photoelectric materials. However, the application of lead-based perovskites has been hindered by their toxicity and relatively weak stability. In this work, a composite material comprising a lead-free perovskite cesium copper iodide (CsCu2I3) nanocrystal and a metal-organic framework (MOF-801) has been synthesized through an in situ growth approach. The resulting composite material, denoted as CsCu2I3/MOF-801, demonstrates outstanding stability and exceptional optoelectronic characteristics. MOF-801 may serve a dual role by acting as a protective barrier between CsCu2I3 nanocrystals and the external environment, as well as promoting the efficient transfer of photogenerated charge carriers, thereby mitigating their recombination. Consequently, CsCu2I3/MOF-801 demonstrates its utility by providing both stability and a notably high initial photocurrent. Leveraging the inherent reactivity between H2S and the composite material, which results in the formation of Cu2S and structural alteration, an exceptionally sensitive photoelectrochemical sensor for H2S detection has been designed. This sensor exhibits a linear detection range spanning from 0.005 to 100 µM with a remarkable detection limit of 1.67 nM, rendering it highly suitable for precise quantification of H2S in rat brains. This eco-friendly sensor significantly broadens the application horizon of perovskite materials and lays a robust foundation for their future commercialization.

15.
Plant Dis ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38468140

Morel mushrooms (Morchella spp.) are highly regarded globally for their distinctive texture and savory flavor. In 2022, the cultivation area for morel mushrooms in China reached nearly 20,000 hectares, with predominant cultivars including M. sextelata, M. importuna and M. exima (Bian et al., 2024). In March 2022, however, deformities of friting bodies were observed in M. importna at morel mushroom farms in Huaihua city (28.43°N, 110.47°), China, with an incidence rate ranging from 5% to 10%. The disease symptoms begin with the invasion of the hymenium of morel mushroom by white cotton-like mycelia, ultimately resulting in halted fruiting body growth and the manifestation of anomalous fruiting body morphology. Infected samples were collected from the morel growers. Following sterilization with 75% ethanol of the surrounding tissue of infected samples, the white hyphae from the morel lesions were picked out using a dissecting needle, and incubated onto potato saccharose agar medium supplemented with 60 mg/L streptomycin at 25°C. Studies showed that seven out of nine fungal isolates exhibiting identical morphological features rapidly grew on the same culture medium described above, reaching a length of 75 mm in 4 to 5 days at 25°C. The white and thick hyphal colonies of these isolates gradually filled with brown spore powder. Generally, the conidia of the hyphal colonies were polyblastic with protrusions at the tips, measuring 75 to 165 × 36 to 50 µm (n = 30) in width and length, displaying colors varying from light reddish brown to grayish brown, and possessing one or five septa. To confirm the identity of the pathogen, the region of the internal transcribed spacer region (ITS), 28S nuclear ribosomal large subunit (LSU), and RNA polymerase II second largest subunit (rpb2) genes of the representative isolate H2 were amplified by PCR (Taguiam, et al. 2021). The generated ITS (OR338304), rpb2 (OR452112) and LSU (OR338334) from the isolate H2 had 98-100% similarity to the Alternaria alternata strains ATCC 6663 and CBS 880.95 in BLASTn analysis. ITS, rpb2 and LSU sequences were assembled using Sequence Matrix, and their homogeneity was assessed with PAUP (Vaidya et al., 2011). Bayesian (MrBayes-3.2.7a) and maximum-likelihood (RAxML1.3.1) methods, utilizing the best fit GTR+G+I model obtained from MrModeltest 2.3, were employed for phylogenetic analysis (Aveskamp et al. 2010). Based on morphological characteristics and phylogenetic analysis, the isolate H2 was identified as A. alternata. In the second year post-disease, disease-free morels, with a height of 3 cm, were cultivated in field greenhouses and used for test. A 15 ml suspension (1 × 106 conidia/ml) was applied to 15 young fruiting bodies and their corresponding substrate soil. The results showed that the reappearance of white cotton-like mycelia and deformed M. importuna fruiting bodies within 7 days post-inoculation with the spore suspension, as opposed to the controls. The isolates (H2-1, H2-2 and H2-3) were reisolated from the infected tissues and identified as A. alternata based on its morphological features and phylogenetic analyses. In this study, a similar investigation was previously conducted on cultivated quinoa (Chenopodium quinoa) in Eastern Denmark (Colque-Little et al., 2023). This study marks the first documentation of A. alternata causing deformities in M. importuna fruiting bodies. These deformities occur under conditions of high-temperature (>22°C) and high humidity (>88%). Our findings provide crucial insights for managing A. alternata in M. importuna cultivation in China.

16.
Bioorg Med Chem ; 101: 117609, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38364599

In this study, we have designed, synthesized and tested three series of novel dihydropteridone derivatives possessing isoindolin-1-one or isoindoline moieties as potent inhibitors of PLK1/BRD4. Remarkably, most of the compounds showed preferable inhibitory activity against PLK1 and BRD4. Compound SC10 exhibited excellent inhibitory activity with IC50 values of 0.3 nM and 60.8 nM against PLK1 and BRD4, respectively. Meanwhile, it demonstrated significant anti-proliferative activities against three tumor-derived cell lines (MDA-MB-231 IC50 = 17.3 nM, MDA-MB-361 IC50 = 8.4 nM, and MV4-11 IC50 = 5.4 nM). Moreover, SC10 exhibited moderate rat liver microsomal stability (CLint = 21.3 µL·min-1·mg-1), acceptable pharmacokinetic profile (AUC0-t = 657 ng·h·mL-1, oral bioavailability of 21.4 %) in Sprague-Dawley rats, reduced hERG toxicity, acceptable PPB and CYP450 inhibition. Further research indicated that SC10 could induce MV4-11 cell arrest at the S phase and apoptosis in a dose-dependent manner. This investigation provided us with an initial point for developing novel anticancer agents as dual inhibitors of PLK1 and BRD4.


Antineoplastic Agents , Neoplasms , Protein Kinase Inhibitors , Animals , Rats , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Neoplasms/drug therapy , Nuclear Proteins/metabolism , Rats, Sprague-Dawley , Structure-Activity Relationship , Transcription Factors , Bromodomain Containing Proteins/antagonists & inhibitors , Indoles/chemistry , Indoles/pharmacology , Polo-Like Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
17.
Plant Physiol Biochem ; 208: 108465, 2024 Mar.
Article En | MEDLINE | ID: mdl-38422577

The concentration of atmospheric carbon dioxide (CO2) has increased drastically over the past several decades, resulting in the pH of the ocean decreasing by 0.44 ± 0.005 units, known as ocean acidification (OA). The Kappaphycus alvarezii (Rhodophyta, Solieriaceae), is a commercially and ecologically important red macroalga with significant CO2 absorption potential from seawater. The K. alvarezii also experienced light variations from self-shading and varied cultivation depths. Thus, the aim of present study was to investigate the effects of two pCO2 levels (450 and 1200 ppmv) and three light intensities (50, 100, and 150 µmol photons·m-2·s-1) on photosynthesis and the biochemical components in K. alvarezii. The results of the present study showed that a light intensity of 50 µmol photons·m-2·s-1 was optimal for K. alvarezii photosynthesis with 0.663 ± 0.030 of Fv/Fm and 0.672 ± 0.025 of Fv'/Fm'. Phycoerythrin contents at two pCO2 levels decreased significantly with an increase in light intensity by 57.14-87.76%, while phycocyanin contents only decreased from 0.0069 ± 0.001 mg g-1 FW to 0.0047 ± 0.001 mg g-1 FW with an increase in light intensity at 1200 ppmv of pCO2. Moreover, moderate increases in light intensity and pCO2 had certain positive effects on the physiological performance of K. alvarezii, specifically in terms of increasing soluble carbohydrate production. Although OA and high light levels promoted total organic carbon accumulation (21.730 ± 0.205% DW) in K. alvarezii, they had a negative impact on total nitrogen accumulation (0.600 ± 0.017% DW).


Edible Seaweeds , Rhodophyta , Seaweed , Seawater/chemistry , Hydrogen-Ion Concentration , Carbon Dioxide/pharmacology , Ocean Acidification , Photosynthesis
18.
Medicine (Baltimore) ; 103(8): e36982, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38394542

Golimumab and etanercept both exhibit good efficacy in treating rheumatic diseases, while the patient self-reported measurement of treatment improvement and injection experience lacks sufficient evidence. Hence, this study aimed to compare the satisfaction with disease improvement and injection experience and the level of injection site reactions (ISRs) between golimumab-treated and etanercept-treated patients with rheumatic diseases. A total of 312 patients with rheumatic diseases were serially enrolled. Among them, 158 patients received golimumab (golimumab group); the other 154 patients were treated with etanercept (etanercept group) according to the actual disease status, physician advice, and patient willingness. Satisfaction with disease improvement was assessed using the 7-point Likert scale; satisfaction with injection experience and level of ISRs were both determined by the 5-point Likert scale. Satisfaction degrees with global injection experience (P = .025), injection device (P = .008), injection frequency (P = .010), and injection convenience (P = .003) were superior in the golimumab group to the etanercept group, while satisfaction degrees with global disease improvement, symptom relief, and speed of action did not vary (all P > .050) between the 2 groups. Discomfort (P = .005), swelling (P < .001), pain (P = .028), and burning (P = .035) levels were lower in the golimumab group than in the etanercept group. In addition, among 56 patients with a history of tumor necrosis factor inhibitor treatment before golimumab, 40 (71.4%) patients preferred golimumab to other tumor necrosis factor inhibitor. After switching to golimumab treatment, the level of ISRs in most patients was reduced or comparable. Golimumab achieves a satisfying injection experience and relieves the level of ISRs over etanercept in patients with rheumatic diseases.


Antibodies, Monoclonal , Antirheumatic Agents , Arthritis, Rheumatoid , Rheumatic Diseases , Humans , Etanercept/therapeutic use , Adalimumab/therapeutic use , Cohort Studies , Tumor Necrosis Factor Inhibitors/therapeutic use , Self Report , Arthritis, Rheumatoid/drug therapy , Patient Satisfaction , Rheumatic Diseases/drug therapy , Tumor Necrosis Factor-alpha/therapeutic use , Treatment Outcome
19.
Biomed Pharmacother ; 172: 116264, 2024 Mar.
Article En | MEDLINE | ID: mdl-38359491

Pseudomonas aeruginosa (PA) is one of the leading pathogens responsible for hospital-acquired infections. With the increasing antibiotic resistance of PA, clinical treatment has become increasingly challenging. DNA vaccines represent a promising approach for combating PA infection. However, the immune response induced by a single antigen is limited, and combination vaccines hold greater therapeutic potential. The highly conserved OprF and PcrV genes are attractive candidate antigens for vaccine development, but the poor delivery of such vaccines has limited their clinical application. In this study, we constructed an OprF/PcrV bivalent DNA vaccine, and a polyaspartamide/polyethylene glycol di-aldehyde (PSIH/PEG DA) hydrogel was formulated to improve DNA delivery. The OprF/PcrV DNA vaccine formulated with the PSIH/PEG DA hydrogel was carefully characterized in vitro and in vivo and showed suitable compatibility. The PSIH/PEG DA hydrogel formulation induced a mixed Th1/Th2/Th17 immune response in mice, leading to a significant increase in antibody titers, lymphocyte proliferation rates, and cytokine levels compared to those in mice treated with single or combined vaccines. The PSIH/PEG DA hydrogel delivery system significantly enhanced the immune protection of the DNA vaccine in a murine pneumonia model, as revealed by the reduced bacterial burden and inflammation in the mouse lungs and increased survival rate. In conclusion, the PSIH/PEG DA hydrogel delivery system can further enhance the immune efficacy of the combination OprF/PcrV DNA vaccine. This research provides a novel optimized strategy for the prevention and treatment of PA infection using DNA vaccines.


Pseudomonas Infections , Vaccines, DNA , Animals , Mice , Hydrogels , Pseudomonas aeruginosa , Aldehydes , Biocompatible Materials , Pseudomonas Infections/prevention & control
20.
J Ethnopharmacol ; 325: 117838, 2024 May 10.
Article En | MEDLINE | ID: mdl-38310986

ETHNOPHARMACOLOGICAL RELEVANCE: Numerous studies have demonstrated that various traditional Chinese medicines (TCMs) exhibit potent anti-inflammatory effects against inflammatory diseases mediated through macrophage polarization and metabolic reprogramming. AIM OF THE STUDY: The objective of this review was to assess and consolidate the current understanding regarding the pathogenic mechanisms governing macrophage polarization in the context of regulating inflammatory diseases. We also summarize the mechanism action of various TCMs on the regulation of macrophage polarization, which may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization. MATERIALS AND METHODS: We conducted a comprehensive review of recently published articles, utilizing keywords such as "macrophage polarization" and "traditional Chinese medicines" in combination with "inflammation," as well as "macrophage polarization" and "inflammation" in conjunction with "natural products," and similar combinations, to search within PubMed and Google Scholar databases. RESULTS: A total of 113 kinds of TCMs (including 62 components of TCMs, 27 TCMs as well as various types of extracts of TCMs and 24 Chinese prescriptions) was reported to exert anti-inflammatory effects through the regulation of key pathways of macrophage polarization and metabolic reprogramming. CONCLUSIONS: In this review, we have analyzed studies concerning the involvement of macrophage polarization and metabolic reprogramming in inflammation therapy. TCMs has great advantages in regulating macrophage polarization in treating inflammatory diseases due to its multi-pathway and multi-target pharmacological action. This review may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization.


Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Immunity , Macrophages
...